Обратная матрица а 1. Нахождение обратной матрицы

Обратная матрица а 1. Нахождение обратной матрицы

1. Находим определитель исходной матрицы. Если , то матрица- вырожденная и обратной матрицыне существует. Если, то матрицаневырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к.

3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу.

4. Составляем обратную матрицу по формуле .

5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения:.

Пример. Найти матрицу, обратную данной: .

Р е ш е н и е.

1) Определитель матрицы

.

2) Находим алгебраические дополнения элементов матрицы и составляем из них присоединенную матрицу :

3) Вычисляем обратную матрицу:

,

4) Проверяем:

№4 Ранг матрицы. Линейная независимость строк матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице размеромвычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы-го порядка, где. Определители таких подматриц называютсяминорами -го порядка матрицы .

Например, из матриц можно получить подматрицы 1, 2 и 3-го порядка.

Определение. Рангом матрицы называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение:или.

Из определения следует:

1) Ранг матрицы не превосходит меньшего из ее размеров, т.е..

2) тогда и только тогда, когда все элементы матрицы равны нулю, т.е..

3) Для квадратной матрицы n-го порядка тогда и только тогда, когда матрица- невырожденная.

Поскольку непосредственный перебор всех возможных миноров матрицы , начиная с наибольшего размера, затруднителен (трудоемок), то пользуются элементарными преобразованиями матрицы, сохраняющими ранг матрицы.

Элементарные преобразования матрицы:

1) Отбрасывание нулевой строки (столбца).

2) Умножение всех элементов строки (столбца) на число .

3) Изменение порядка строк (столбцов) матрицы.

4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5) Транспонирование матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор-го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .

№5Линейная независимость строк матрицы

Дана матрица размера

Обозначим строки матрицы следующим образом:

Две строки называются равными , если равны их соответствующие элементы. .

Введем операции умножения строки на число и сложение строк как операции, проводимые поэлементно:

Определение. Строка называется линейной комбинацией строкматрицы, если она равна сумме произведений этих строк на произвольные действительные числа(любые числа):

Определение. Строки матрицы называютсялинейно зависимыми , если существует такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

Где . (1.1)

Линейная зависимость строк матрицы обозначает, что хотя бы 1 строка матрицы является линейной комбинацией остальных.

Определение. Если линейная комбинация строк (1.1) равна нулю тогда и только тогда, когда все коэффициенты , то строкиназываютсялинейно независимыми .

Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные строки (столбцы).

Теорема играет принципиальную роль в матричном анализе, в частности, при исследовании систем линейных уравнений.

№6 Решение системы линейных уравнений снеизвестными

Системы линейных уравнений находят широкое применение в экономике.

Система линейных уравнений спеременными имеет вид:

,

где () - произвольные числа, называемыекоэффициентами при переменных и свободными членами уравнений , соответственно.

Краткая запись: ().

Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.

1) Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет решений.

2) Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

3) Две системы уравнений называются равносильными (эквивалентными ) , если они имеют одно и то же множество решений (например, одно решение).

Пусть дана квадратная матрица . Требуется найти обратную матрицу.

Первый способ. В теореме 4.1 существования и единственности обратной матрицы указан один из способов ее нахождения.

1. Вычислить определитель данной матрицы. Если, то обратной матрицы не существует (матрицавырожденная).

2. Составить матрицу из алгебраических дополненийэлементов матрицы.

3. Транспонируя матрицу , получить присоединенную матрицу.

4. Найти обратную матрицу (4.1), разделив все элементы присоединенной матрицы на определитель

Второй способ. Для нахождения обратной матрицы можно использовать элементарные преобразования.

1. Составить блочную матрицу , приписав к данной матрицеединичную матрицу того же порядка.

2. При помощи элементарных преобразований, выполняемых над строками матрицы , привести ее левый блокк простейшему виду. При этом блочная матрица приводится к виду, где- квадратная матрица, полученная в результате преобразований из единичной матрицы.

3. Если , то блокравен обратной матрице, т.е.. Если, то матрицане имеет обратной.

В самом деле, при помощи элементарных преобразований строк матрицы можно привести ее левый блокк упрощенному виду(см. рис. 1.5). При этом блочная матрицапреобразуется к виду, где- элементарная матрица, удовлетворяющая равенству. Если матрицаневырожденная, то согласно п.2 замечаний 3.3 ее упрощенный вид совпадает с единичной матрицей. Тогда из равенстваследует, что. Если же матрицавырожденная, то ее упрощенный видотличается от единичной матрицы, а матрицане имеет обратной.

11. Матричные уравнения и их решение. Матричная форма записи СЛАУ. Матричный способ (метод обратной матрицы) решения СЛАУ и условия его применимости.

Матричными уравнениями называются уравнения вида: A*X=C; X*A=C; A*X*B=C где матрица А,В,С известны,матрица Х не известна, если матрицы А и В не вырождены, то решения исходных матриц запишется в соответственном виде: Х=А -1 *С; Х=С*А -1 ; Х=А -1 *С*В -1 Матричная форма записи систем линейных алгебраических уравнений. С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса .

12. Однородные СЛАУ, условия существования их ненулевых решений. Свойства частных решений однородных СЛАУ.

Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

13 .Понятие линейной независимости и зависимости частных решений однородной СЛАУ. Фундаментальная система решений (ФСР) и её нахождение. Представление общего решения однородной СЛАУ через ФСР.

Система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно зависимой на интервале (a , b ), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a , b ): для . Если равенство для возможно только при , система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно независимой на интервале (a , b ). Другими словами, функции y 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), если существует равная нулю на (a , b ) их нетривиальная линейная комбинация. Функции y 1 (x ),y 2 (x ), …, y n (x ) линейно независимы на интервале (a , b ), если только тривиальная их линейная комбинация тождественно равна нулю на (a , b ).

Фундаментальной системой решений (ФСР) однородной СЛАУ называется базис этой системы столбцов.

Количество элементов в ФСР равно количеству неизвестных системы минус ранг матрицы системы. Любое решение исходной системы есть линейная комбинация решений ФСР.

Теорема

Общее решение неоднородной СЛАУ равно сумме частного решения неоднородной СЛАУ и общего решения соответствующей однородной СЛАУ.

1 . Если столбцы - решения однородной системы уравнений, то любая их линейная комбинациятакже является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеетлинейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений, придавая свободным переменным следующиестандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные - равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последнихстроках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен. Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решенийоднородной системы называетсяфундаментальной системой (совокупностью) решений .

14 Минор -ого порядка, базисный минор, ранг матрицы. Вычисление ранга матрицы.

Минором порядка k матрицы А называется детерминант некоторой ее квадратной подматрицы порядка k.

В матрице А размеров m x n минор порядка r называется базисным, если он отличен от нуля, а все миноры большего порядка, если они существуют, равны нулю.

Столбцы и строки матрицы А, на пересечении которых стоит базисный минор, называются базисными столбцами и строками А.

Теорема 1. (О ранге матрицы). У любой матрицы минорный ранг равен строчному рангу и равен столбцовому рангу.

Теорема 2.(О базисном миноре). Каждый столбец матрицы раскладывается в линейную комбинацию ее базисных столбцов.

Рангом матрицы (или минорным рангом) называется порядок базисного минора или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Ранг нулевой матрицы по определению считают 0.

Отметим два очевидных свойства минорного ранга.

1) Ранг матрицы не меняется при транспонировании, так как при транспонировании матрицы все ее подматрицы транспонируются и миноры не меняются.

2) Если А’-подматрица матрицы А, то ранг А’ не превосходит ранга А, так как ненулевой минор, входящий в А’, входит и в А.

15. Понятие -мерного арифметического вектора. Равенство векторов. Действия над векторами (сложение, вычитание, умножение на число, умножение на матрицу). Линейная комбинация векторов.

Упорядоченная совокупность n действительных или комплексных чисел называется n-мерным вектором . Числа называются координатами вектора .

Два (ненулевых) вектора a и b равны, если они равнонаправлены и имеют один и тот же модуль. Все нулевые векторы считаются равными. Во всех остальных случаях векторы не равны.

Сложение векторов. Для сложения векторов есть два способа.1. Правило параллелограмма. Чтобы сложить векторы и, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторови.

2. Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и . По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Вычитание векторов. Вектор направлен противоположно вектору. Длины векторовиравны. Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины. Он сонаправлен с вектором, если k больше нуля, и направлен противоположно, если k меньше нуля.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними. Если векторы перпендикулярны, их скалярное произведение равно нулю. А вот так скалярное произведение выражается через координаты векторов и .

Линейная комбинация векторов

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

16 .Скалярное произведение арифметических векторов. Длина вектора и угол между векторами. Понятие ортогональности векторов.

Скалярным произведением векторов а и в называется число,

Скалярное произведение используется для вычисления:1)нахождения угла между ними;2)нахождение проекции векторов;3)вычисление длины вектора;4)условия перпендикулярности векторов.

Длиной отрезка АВ называют расстоянием между точками А иВ. Угол между векторами А и В называют угол α=(а,в) ,0≤ α ≤П. На который необходимо повернуть 1 вектор,чтоб его направления совпало с другим вектором. При условии,что их начала совпадут.

Ортом а называется вектор а имеющий единичную длину и направления а.

17. Система векторов и её линейная комбинация. Понятие линейной зависимости и независимости системы векторов. Теорема о необходимом и достаточном условиях линейной зависимости системы векторов.

Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λnтакие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.

Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.

Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.

Геометрические критерии линейной зависимости:

а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.

б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3компланарны.

теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Следствие.1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a , не равного нулю, существует такое число b , что произведение a и b равно единице: ab = 1 . Число b называется обратным для числа b . Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Обратной матрицей , которую требуется отыскать для данной квадратной матрицы А , называется такая матрица

произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором требуется находить определители и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу . Умножим обе части этой матрицы на , тогда получим

,

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

В результате должна получиться обратная матрица.

онлайн калькулятора для нахождения обратной матрицы .

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

.

Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим

.

Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.

Проверить решение можно с помощью

Похожие на обратные по многим свойствам.

Энциклопедичный YouTube

    1 / 5

    ✪ Обратная матрица (2 способа нахождения)

    ✪ Как находить обратную матрицу - bezbotvy

    ✪ Обратная матрица #1

    ✪ Решение системы уравнений методом обратной матрицы - bezbotvy

    ✪ Обратная Матрица

    Субтитры

Свойства обратной матрицы

  • det A − 1 = 1 det A {\displaystyle \det A^{-1}={\frac {1}{\det A}}} , где det {\displaystyle \ \det } обозначает определитель .
  • (A B) − 1 = B − 1 A − 1 {\displaystyle \ (AB)^{-1}=B^{-1}A^{-1}} для двух квадратных обратимых матриц A {\displaystyle A} и B {\displaystyle B} .
  • (A T) − 1 = (A − 1) T {\displaystyle \ (A^{T})^{-1}=(A^{-1})^{T}} , где (. . .) T {\displaystyle (...)^{T}} обозначает транспонированную матрицу.
  • (k A) − 1 = k − 1 A − 1 {\displaystyle \ (kA)^{-1}=k^{-1}A^{-1}} для любого коэффициента k ≠ 0 {\displaystyle k\not =0} .
  • E − 1 = E {\displaystyle \ E^{-1}=E} .
  • Если необходимо решить систему линейных уравнений , (b - ненулевой вектор) где x {\displaystyle x} - искомый вектор, и если A − 1 {\displaystyle A^{-1}} существует, то x = A − 1 b {\displaystyle x=A^{-1}b} . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Гаусса-Жордана

Возьмём две матрицы: саму A и единичную E . Приведём матрицу A к единичной матрице методом Гаусса-Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам, но не в перемешку). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A −1 .

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i {\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 {\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}} . Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 − a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 − a m + 1 m / a m m 1 … 0 … 0 … 0 − a n m / a m m 0 … 1 ] {\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}} .

Вторая матрица после применения всех операций станет равна Λ {\displaystyle \Lambda } , то есть будет искомой. Сложность алгоритма - O (n 3) {\displaystyle O(n^{3})} .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице A {\displaystyle A} , представима в виде

A − 1 = adj (A) det (A) {\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj (A) {\displaystyle {\mbox{adj}}(A)} - присоединенная матрица ;

Сложность алгоритма зависит от сложности алгоритма расчета определителя O det и равна O(n²)·O det .

Использование LU/LUP-разложения

Матричное уравнение A X = I n {\displaystyle AX=I_{n}} для обратной матрицы X {\displaystyle X} можно рассматривать как совокупность n {\displaystyle n} систем вида A x = b {\displaystyle Ax=b} . Обозначим i {\displaystyle i} -ый столбец матрицы X {\displaystyle X} через X i {\displaystyle X_{i}} ; тогда A X i = e i {\displaystyle AX_{i}=e_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} ,поскольку i {\displaystyle i} -м столбцом матрицы I n {\displaystyle I_{n}} является единичный вектор e i {\displaystyle e_{i}} . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³) .

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение P A = L U {\displaystyle PA=LU} . Пусть P A = B {\displaystyle PA=B} , B − 1 = D {\displaystyle B^{-1}=D} . Тогда из свойств обратной матрицы можно записать: D = U − 1 L − 1 {\displaystyle D=U^{-1}L^{-1}} . Если умножить это равенство на U и L то можно получить два равенства вида U D = L − 1 {\displaystyle UD=L^{-1}} и D L = U − 1 {\displaystyle DL=U^{-1}} . Первое из этих равенств представляет собой систему из n² линейных уравнений для n (n + 1) 2 {\displaystyle {\frac {n(n+1)}{2}}} из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n (n − 1) 2 {\displaystyle {\frac {n(n-1)}{2}}} из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно реккурентно определить все n² элементов матрицы D. Тогда из равенства (PA) −1 = A −1 P −1 = B −1 = D. получаем равенство A − 1 = D P {\displaystyle A^{-1}=DP} .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма - O(n³).

Итерационные методы

Методы Шульца

{ Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i {\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U 0 {\displaystyle U_{0}} , обеспечивающие выполнение условия ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы A A T {\displaystyle AA^{T}} (а именно, если A - симметричная положительно определённая матрица и ρ (A) ≤ β {\displaystyle \rho (A)\leq \beta } , то можно взять U 0 = α E {\displaystyle U_{0}={\alpha }E} , где ; если же A - произвольная невырожденная матрица и ρ (A A T) ≤ β {\displaystyle \rho (AA^{T})\leq \beta } , то полагают U 0 = α A T {\displaystyle U_{0}={\alpha }A^{T}} , где также α ∈ (0 , 2 β) {\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)} ; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ (A A T) ≤ k A A T k {\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}} , положить U 0 = A T ‖ A A T ‖ {\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}} ). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖ Ψ 0 ‖ {\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖ Ψ 0 ‖ > 1 {\displaystyle \|\Psi _{0}\|>1} ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Примеры

Матрица 2х2

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin& \!\!-b \\ -c & \,a \\ \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} \,\,\,d & \!\!-b\\ -c & \,a \\ \end{bmatrix}.}

Обращение матрицы 2х2 возможно только при условии, что a d − b c = det A ≠ 0 {\displaystyle ad-bc=\det A\neq 0} .

Исходной по формуле: A^-1 = A*/detA, где A* - присоединенная матрица, detA - исходной матрицы. Присоединенная матрица - это транспонированная матрица дополнений к элементам исходной матрицы.

Первым делом найдите определитель матрицы, он должен быть отличен от нуля, так как дальше определитель будет использоваться в качестве делителя. Пусть для примера дана матрица третьего (состоящая из трех строк и трех столбцов). Как видно, определитель матрицы не равен нулю, поэтому существует обратная матрица.

Найдите дополнения к каждому элементу матрицы A. Дополнением к A называется определитель подматрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца, причем этот определитель берется со знаком. Знак определяется умножением определителя на (-1) в степени i+j. Таким образом, например, дополнением к A будет определитель, рассмотренный на рисунке. Знак получился так: (-1)^(2+1) = -1.

В результате вы получите матрицу дополнений, теперь транспонируйте ее. Транспонирование - это операция, симметричная относительно главной диагонали матрицы, столбцы и строки меняются местами. Таким образом, вы нашли присоединенную матрицу A*.