Расчет правой границы доверительного интервала для процентиля. Доверительные интервалы и их применение

Расчет правой границы доверительного интервала для процентиля. Доверительные интервалы и их применение

Запишите задачу. Например: средний вес студента мужского пола в университете АВС составляет 90 кг . Вы будете тестировать точность предсказания веса студентов мужского пола в университете АВС в пределах данного доверительного интервала.

Составьте подходящую выборку. Вы будете использовать ее для сбора данных для тестирования гипотезы. Допустим, вы уже случайно выбрали 1000 студентов мужского пола.

Рассчитайте среднее значение и стандартное отклонение этой выборки. Выберите статистические величины (например, среднее значение и стандартное отклонение), которые вы хотите использовать для анализа вашей выборки. Вот как вычислить среднее значение и стандартное отклонение:

  • Для расчета среднего значения выборки сложите значения весов 1000 выбранных мужчин и разделите результат на 1000 (число мужчин). Допустим, получили средний вес, равный 93 кг.
  • Для расчета стандартного отклонения выборки необходимо найти среднее значение. Затем нужно вычислить дисперсию данных или среднее значение квадратов разностей от среднего. Найдя это число, просто возьмите квадратный корень из него. Допустим, в нашем примере стандартное отклонение равно 15 кг (заметим, что иногда эта информация может быть дана вместе с условием статистической задачи).
  • Выберите нужный доверительный уровень. Наиболее часто используемые доверительные уровни: 90 %, 95 % и 99 %. Он также может быть дан вместе с условием задачи. Допустим, вы выбрали 95 %.

  • Рассчитайте предел погрешности. Вы можете найти предел погрешности с помощью следующей формулы: Z a/2 * σ/√(n). Z a/2 = коэффициент доверия (где а = доверительный уровень), σ = стандартное отклонение, а n = размер выборки. Это формула показывает, что вы должны умножить критическое значение на стандартную ошибку. Вот как вы можете решить эту формулу, разбив ее на части:

    • Вычислите критическое значение или Z a/2 . Доверительный уровень равен 95 %. Преобразуйте проценты в десятичную дробь: 0,95 и разделите ее на 2, чтобы получить 0,475. Затем посмотрите в таблицу Z-оценок , чтобы найти соответствующее значение для 0,475. Вы найдете значение 1,96 (на пересечении строки 1,9 и столбца 0,06).
    • Возьмите стандартную ошибку (стандартное отклонение): 15 и разделите ее на квадратный корень из размера выборки: 1000. Вы получите: 15/31,6 или 0,47 кг.
    • Умножьте 1,96 на 0,47 (критическое значение на стандартную ошибку), чтобы получить 0,92 - предел погрешности.
  • Запишите доверительный интервал. Чтобы сформулировать доверительный интервал, просто запишите среднее значение (93) ± погрешность. Ответ: 93 ± 0,92. Вы можете найти верхнюю и нижнюю границы доверительного интервала, прибавляя и вычитая погрешность к/от средней величины. Итак, нижняя граница составляет 93 - 0,92 или 92,08, а верхняя граница составляет 93 + 0,92 или 93,92.

    • Вы можете использовать следующую формулу для вычисления доверительного интервала: x̅ ± Z a/2 * σ/√(n) , где x̅ - среднее значение.
  • Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.

    Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.

    В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ , а во втором — ДОВЕРИТ.СТЮДЕНТ .

    Способ 1: функция ДОВЕРИТ.НОРМ

    Оператор ДОВЕРИТ.НОРМ , относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ . Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.

    Его синтаксис выглядит следующим образом:

    ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

    «Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:

    (1-«Альфа»)*100

    «Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.

    «Размер» — аргумент, определяющий величину выборки.

    Все аргументы данного оператора являются обязательными.

    Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:

    ДОВЕРИТ(альфа;стандартное_откл;размер)

    Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость» . В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.

    Граница доверительного интервала определяется при помощи формулы следующего вида:

    X+(-)ДОВЕРИТ.НОРМ

    Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.

    Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.

    1. Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию» .
    2. Появляется Мастер функций . Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ» . После этого клацаем по кнопке «OK» .
    3. Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
      Устанавливаем курсор в первое поле – «Альфа» . Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:

      (1-уровень доверия)/100

      То есть, подставив значение, получаем:

      Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03 . Вводим данное значение в поле.

      Как известно, по условию стандартное отклонение равно 8 . Поэтому в поле «Стандартное отклонение» просто записываем это число.

      В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12 . Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ . Итак, устанавливаем курсор в поле «Размер» , а затем кликаем по треугольнику, который размещен слева от строки формул.

      Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…» .

    4. Появляется уже знакомый нам Мастер функций . Опять перемещаемся в группу «Статистические» . Выделяем там наименование «СЧЁТ» . Клацаем по кнопке «OK» .
    5. Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:

      СЧЁТ(значение1;значение2;…)

      Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.

      Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK» .

    6. После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:

      ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

      Общий результат вычислений составил 5,011609 .

    7. Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ . Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ .

      Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:

      СРЗНАЧ(число1;число2;…)

      Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.

      Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию» .

    8. Открывается Мастер функций . Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ» . Как всегда, клацаем по кнопке «OK» .
    9. Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK» .
    10. После этого СРЗНАЧ выводит результат расчета в элемент листа.
    11. Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=» и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ и ДОВЕРИТ.НОРМ . Для того, чтобы выполнить расчет, жмем на клавишу Enter . В нашем случае получилась следующая формула:

      Результат вычисления: 6,953276

    12. Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ . Получается формула для нашего примера следующего типа:

      Результат вычисления: -3,06994

    13. Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:

      СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    14. Аналогичное вычисление левой границы будет выглядеть так:

      СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

    Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ . Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:

    ДОВЕРИТ.СТЬЮДЕНТ(альфа;стандартное_откл;размер)

    Как видим, наименования операторов и в этом случае остались неизменными.

    Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.

    1. Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию» .
    2. В открывшемся Мастере функций переходим в категорию «Статистические» . Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ» . Клацаем по кнопке «OK» .
    3. Производится запуск окна аргументов указанного оператора.

      В поле «Альфа» , учитывая, что уровень доверия составляет 97%, записываем число 0,03 . Второй раз на принципах расчета данного параметра останавливаться не будем.

      После этого устанавливаем курсор в поле «Стандартное отклонение» . На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В . Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…» .

    4. Запускается Мастер функций . Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В» . Затем клацаем по кнопке «OK» .
    5. Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В является определение стандартного отклонения при выборке. Его синтаксис выглядит так:

      СТАНДОТКЛОН.В(число1;число2;…)

      Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.

      Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK» , так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ , чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.

    6. Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер» . Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ» . Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
    7. Попав в окно аргументов СЧЁТ , ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK» .
    8. После этого программа производит расчет и выводит значение доверительного интервала.
    9. Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
    10. Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ , получаем правую границу доверительного интервала.
    11. Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ , имеем левую границу доверительного интервала.
    12. Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:

      СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

    13. Соответственно, формула расчета левой границы будет выглядеть так:

      СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

    Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.

    Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    1) погрешности измерений могут принимать непрерывный ряд значений;

    2) при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    3) чем больше величина случайной погрешности, тем меньше вероятность ее появления.

    График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

    где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

    Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

    Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

    где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

    Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

    Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

    Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .


    Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

    Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

    Анализ случайных погрешностей основывается на теории случайных ошибок, дающей возможность с определенной гарантией вычислить действительное значение измеренной величины и оценить возможные ошибки.

    Основу теории случайных ошибок составляют следующие предположения:

    при большом числе измерений случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто;

    большие погрешности встречаются реже, чем малые (вероятность появления погрешности уменьшается с ростом ее величины);

    при бесконечно большом числе измерении истинное значение измеряемой величины равно среднеарифметическому значению всех результатов измерений;

    появление того или иного результата измерения как случайного события описывается нормальным законом распределения.

    На практике различают генеральную и выборочную совокупность измерений.

    Под генеральной совокупностью подразумевают все множество возможных значений измерений или возможных значений погрешностей
    .

    Для выборочной совокупности число измерений ограничено, и в каждом конкретном случае строго определяется. Считают, что, если
    , то среднее значение данной совокупности измеренийдостаточно приближается к его истинному значению.

    1. Интервальная оценка с помощью доверительной вероятности

    Для большой выборки и нормального закона распределения общей оценочной характеристикой измерения являются дисперсия
    и коэффициент вариации:

    ;
    . (1.1)

    Дисперсия характеризует однородность измерения. Чем выше
    , тем больше разброс измерений.

    Коэффициент вариации характеризует изменчивость. Чем выше , тем больше изменчивость измерений относительно средних значений.

    Для оценки достоверности результатов измерений вводятся в рассмотрение понятия доверительного интервала и доверительной вероятности.

    Доверительным называется интервал значений , в который попадает истинное значение измеряемой величины с заданной вероятностью.

    Доверительной вероятностью (достоверностью) измерения называется вероятность того, что истинное значение измеряемой величины попадает в данный доверительный интервал, т.е. в зону
    . Эта величина определяется в долях единицы или в процентах

    ,

    где
    - интегральная функция Лапласа (табл.1.1 )

    Интегральная функция Лапласа определяется следующим выражением:

    .

    Аргументом этой функции является гарантийный коэффициент :

    Таблица 1.1

    Интегральная функция Лапласа

    Если же на основе определенных данных установлена доверительная вероятность (часто ее принимают равной
    ), то устанавливаетсяточность измерений (доверительный интервал
    ) на основе соотношения

    .

    Половина доверительного интервала равна

    , (1.3)

    где
    - аргумент функции Лапласа, если
    (табл.1.1 );

    - функции Стьюдента, если
    (табл.1.2 ).

    Таким образом, доверительный интервал характеризует точность измерения данной выборки, а доверительная вероятность - достоверность измерения.

    Пример

    Выполнено
    измерений прочности дорожного покрытия участка автомобильной дороги при среднем модуле упругости
    и вычисленном значении среднеквадратического отклонения
    .

    Необходимо определить требуемую точность измерений для разных уровней доверительной вероятности
    , приняв значения потабл.1.1 .

    В этом случае соответственно |

    Следовательно, для данного средства и метода измерений доверительный интервал возрастает примерно в раза, если увеличитьтолько на
    .

    В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

    Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

    При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

    Скачать заметку в формате или , примеры в формате

    Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

    Построение доверительного интервала для доли признака в генеральной совокупности

    В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


    где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

    Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

    Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

    Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

    В ычисление оценок, извлеченных из конечной генеральной совокупности

    Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

    Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

    Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

    Доверительные интервалы и этические проблемы

    При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

    Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

    Следующая заметка

    Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

    Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.